Oxygenation: From atmosphere to veins

Prof. Michael Veltman

MBBS FANZCA FASE FFPMANZCA

Deputy Director of Medical Services
Director Of Anaesthesia
Joondalup Health Campus

Adj. Professor Curtin \& Notre Dame University

Oxygenation Outline

(3) Physiology
© Assessment of oxygenation

- Oxygen Flux equations
- Examples

Physiology

Outline

© Commonly used terms

- Oxygen Partial Pressure
- Oxygen Saturation
- Oxygen Content
© Oxygen Carriage in blood
(3) Relationship of SaO_{2} to PaO_{2}
- Oxygen Cascade
- Examples

Definitions

 andCommon Terms

Oxygen Partial Pressure

© The pressure of the oxygen component of a gas or liquid
© Oxygen in air: 21%
© Total atmospheric pressure: 760 mmHg
(3) Pressure of O_{2} in atmosphere: 159 mmHg

Oxygen Saturation

© This is the percentage of haemaglobin that carries oxygen

- Normally quite high (> 95\%)
© Difference between an ABG and an oximeter
- SaO_{2} - From a blood gas machine
- SpO_{2} - From an oximeter

Dissociation curve

($)$ Changes with:

- \uparrow Acidosis
© \uparrow Warmth
- \uparrow Carbon dioxide
(3) Chronically with:
© $\uparrow 2,3$ DPG levels

Oxygen Carriage

Oxygen Content

(3) Where is oxygen stored in the blood?

- Directly in blood as a gas in solution
© On Haemoglobin
(3) CaO_{2} is the oxygen content of blood
- Expressed in ml oxygen per litre blood

On Haemaglobin

Directly in Plasma

© Small amount stored on plasma.
(1) $\mathrm{PaO}_{2} * 0.03$

Oxygen Storage

© Oxygen storage in blood equals

- Oxygen stored on Hb
(1) PLUS
- Oxygen dissolved in blood

$$
\mathrm{SaO}_{2} \cdot \mathrm{Hb} \cdot 1.34+\mathrm{PaO}_{2} \cdot 0.03
$$

Oxygen Cascade

Oxygen Cascade

© Normal inspired Oxygen is 160 mmHg
(Pressure falls by:

- Humidification
- Mixing with CO_{2}
- Diffusion
- Shunt
- Before entering tissues

Air

- Atmospheric pressure is 760 mmHg
- 21% of this is O_{2}
(-) $\mathrm{PO}_{2}=160 \mathrm{mmHg}$

Humidification

(3) Air is warmed and humidified in airways.
(3) PWater at body temperature is 47 mmHg
(3) $\mathrm{PO}_{2}=150 \mathrm{mmHg}$

Mixing of CO_{2}

© The humidified air then mixes with carbon dioxide in the alveoli
(a) $\mathrm{PO}_{2}=100 \mathrm{mmHg}$

VQ

matching

 \& ShuntC) Not all alveolii are equal - some are better ventilated than others.

- Mixing of shunted blood leads to falls in O_{2} content

Oxygen Cascade

- Normal inspired Oxygen is 160 mmHg
(3) Pressure falls by:
- Humidification
- Mixing with CO 2
- Diffusion
- Shunt
(3) Normally 100 mmHg in Blood

Physiology Examples

Maximal Ventilation
Supplimental Oxygen
Changes with Altitude
© Hyperventilation reduces displacement by carbon dioxide in lungs
(3) Maximal hyperventilation $\left(\mathrm{CO}_{2}\right.$ $=15 \mathrm{mmHg}$)
(1) Water $10 \mathrm{mmHg}, \mathrm{CO}_{2} 20 \mathrm{mmHg}$
(3) Maximum oxygen on air $=120$ mmHg

Supplimental Oxygen

© 100 \% oxygen gives 760 mmHg partial pressure
(3) Displacement still occurs
(1) Water 47 mmHg CO 250 mmHg
(3) Maximum PO_{2} on 100% oxygen (c) $760-47-50=663 \mathrm{mmHg}$

Mountain Climbing

(1) Patm halves each 5500 m ascent
(3) At 5500m:

- Atmostpheric pressure 380 mmHg
(9) Partial Pressure Oxygen 80 mmHg
(1) If SVP $\mathrm{H}_{2} \mathrm{O}$ is 47 and $\mathrm{CO}_{2}=40$:
(a) $\mathrm{PaO}_{2}=80-10-50=20 \mathrm{mmHg}$
(9) If $\mathrm{SVP} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ is 47 and $\mathrm{CO}_{2}=16$
(a) $\mathrm{PaO}_{2}=80-10-20=50 \mathrm{mmHg}$

Estimating PaO_{2}

- Maximum expected arterial oxygen level
- About six times the FiO_{2}
(3) Room air 6* $20=120$
(3) 100% oxygen $6^{*} 100=600$
(3) Not a perfect rule, but an easy one.

Summary

© Commonly used terms

- Oxygen Partial Pressure
- Oxygen Saturation
- Oxygen Content
© Oxygen Carriage in blood
(3) Relationship of SaO_{2} to PaO_{2}
- Oxygen Cascade
- Examples

Assessment of
 Oxygenation

What to look at.

0

(1) Oxygen Saturation $\left(\mathrm{SaO}_{2}\right)$
(3) Oxygen Partial Pressure $\left(\mathrm{PaO}_{2}\right)$
© Oxygen Carrying Capacity (Hb)

Where to sample?

© Arterial Blood

- Arterial Stab
© Arterial Line
© Venous Blood
- PA catheter
© Blood from a vein isn't mixed

Oxygen Flux

Blood O_{2} Levels

(3) Arterial Blood

- $\mathrm{PaO}_{2}-100 \mathrm{mmHg}$
(c) $\mathrm{SaO}_{2}-98 \%$
(3) Venous Blood
- $\mathrm{PaO}_{2}-40 \mathrm{mmHg}$
(-) $\mathrm{SvO}_{2}-75 \%$

Oxygen Content

Oxygen Content

© Content can be expressed mathematically

$$
\mathrm{CaO}_{2}=\mathrm{SaO}_{2} \times \mathrm{Hb} \times 1.34+\mathrm{PaO}_{2} \times 0.03
$$

(3) So the oxygen is mostly found on haemaglobin, not in the plasma.

Blood O_{2} content

© Arterial Blood Content: 200 ml/L
© Venous Blood Content: $150 \mathrm{ml} / \mathrm{L}$
© 50 ml of oxygen is taken out of every litre of blood sent to the tissues.

Oxygen

Delivery \& Return

Normal $\mathrm{DO}_{2} \& \mathrm{VO}_{2}$

C Arterial blood $200 \mathrm{ml} / \mathrm{L}$ oxygen
(3) Venous blood $150 \mathrm{ml} / \mathrm{L}$ oxygen

- Cardiac output $5 \mathrm{~L} / \mathrm{min}$
(3) What is the normal amount of oxygen
- Delivered to the tissues?
© Returned from the tissues?
O Used by the tissues?

Oxygen Delivery

© Oxygen delivery to tissues
© Oxygen returned from the tissues
© Oxygen used by the tissues

Oxygen Delivery

© Oxygen delivery to tissues

- $200 \mathrm{ml} / \mathrm{L} \times 5 \mathrm{~L} / \mathrm{min}=1000 \mathrm{ml} / \mathrm{min}$
© Oxygen returned from the tissues

O Oxygen used by the tissues

Oxygen Return

© Oxygen delivery to tissues
© Oxygen returned from the tissues

- $150 \mathrm{ml} / \mathrm{L} \times 5 \mathrm{~L} / \mathrm{min}=750 \mathrm{ml} / \mathrm{min}$
© Oxygen used by the tissues

Oxygen Uptake

© Oxygen delivery to tissues
© Oxygen returned from the tissues
© Oxygen used by the tissues
C $(200-150) \mathrm{ml} / \mathrm{L} \times 5 \mathrm{~L} / \mathrm{min}=250 \mathrm{ml} / \mathrm{min}$

Summary

© Arterial and Venous Blood

- Where to sample?
- Normal Values
© Oxygen
- Content in blood
- Delivery and Return

Critical Care Examples

(1) Common scenarios

- Emphysema
- Sepsis
- Low cardiac output
- Anaemia
© Remember
- Its all about oxygen delivery

C $250 \mathrm{ml} / \mathrm{min}$ is normal

Example

Example

© 72 year old male.
© Smokes 30/day for all his life
© Now presents short of breath

Measurements

© Output 5 L/min. Hb $190 \mathrm{~g} / \mathrm{L}$
© Arterial Gases

- Saturation 80%
- Pressure 50 mmHg
(3) Venous Gases
- Saturation 60%
- Pressure 31 mmHg

Calculations

(3) Oxygen Delivered:
(9) $205 \mathrm{~mL} / \mathrm{L} \times 5 \mathrm{~L} / \mathrm{min}=1.02 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}$
© Oxygen Returned
(9) $154 \mathrm{~mL} / \mathrm{L} * 5 \mathrm{~L} / \mathrm{min}=0.77 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}$

- Oxygen Used
- 250 ml oxygen per minute

Conclusion

© Lung disease is associated with

- Low saturations and oxygen pressures
- Polycythaemia as compensation
- Normal uptake

Example

Example

(3) 24 year old male - IV drug user
(3) Presents with fever, tachycardia and hypotension.
(3) Admitted to ICU, swan ganz inserted

Measurements

\cdots
(3) Output 12 L/min. Hb 150 g/L

- Arterial Gases
- Saturation 90%
- Pressure 80 mmHg
(3) Venous Gases
- Saturation 50%
- Pressure 28 mmHg

Calculations

(3) Oxygen Delivered:
(9) $180 \mathrm{~mL} / \mathrm{L} \times 12 \mathrm{~L} / \mathrm{min}=2.1 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}$
© Oxygen Returned
(3) $100 \mathrm{~mL} / \mathrm{L} * 12 \mathrm{~L} / \mathrm{min}=1.2 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}$
© Oxygen Used
© 900 ml oxygen per minute

Conclusion

n

$\cdot n$

- Sepsis is associated with
- High cardiac outputs
- Low mixed venous returns
- High oxygen utilisation
- Low SaO_{2} with lung involvement

Example

Low Output

© 55 year old man post AMI
(3) No other medical history
(3) Hypotensive and tachycardic

Measurements

© $\mathrm{CO} 2.5 \mathrm{~L} / \mathrm{min} \mathrm{Hb} 150$

- Arterial Gases
- Saturation 97%
- Pressure 100 mmHg
© Venous Gases
- Saturation 50%
- Pressure 29 mmHg

Calculations

(3) Oxygen Delivered:
($195 \mathrm{~mL} / \mathrm{L} \times 2.5 \mathrm{~L} / \mathrm{min}=500 \mathrm{~mL} \mathrm{O} 2 / \mathrm{min}$
© Oxygen Returned
(1) $100 \mathrm{~mL} / \mathrm{L} * 2.5 \mathrm{~L} / \mathrm{min}=250 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}$

- Oxygen Used

C 250 ml oxygen per minute

Conclusion

(3) Low output states are associated with
© Normal arterial saturation and content
(3) The venous side is abnormal

- Low mixed venous saturation
- If you halve the cardiac output
- Oxygen extraction doubles
- Total oxygen delivery is maintained

Example

Example

© 25 year old woman post partum haemorrage
© No other medical history
(3) Normotensive and tachycardic

Measurements

(c) CO $10 \mathrm{~L} / \mathrm{min} \mathrm{Hb} 37$

- Arterial Gases
- Saturation 97%
- Pressure 100 mmHg
© Venous Gases
- Saturation 50%
- Pressure 29 mmHg

Calculations

(3) Oxygen Delivered:
($) 50 \mathrm{~mL} / \mathrm{L} \times 10 \mathrm{~L} / \mathrm{min}=500 \mathrm{~mL} \mathrm{O} 2 / \mathrm{min}$
© Oxygen Returned
(9) $25 \mathrm{~mL} / \mathrm{L}$ * $10 \mathrm{~L} / \mathrm{min}=250 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}$

- Oxygen Used

C 250 ml oxygen per minute

Conclusion

© Anaemia states are associated with
© Normal arterial saturations but low content
(3) The venous side is abnormal

- Low mixed venous saturation
- Very low mixed venous content
- If you reduce oxygen content in blood
- Output and extraction increase

Critical Care Examples

(1) Common scenarios

- Emphysema/Sepsis/Low output/Anaemia
© Low arterial saturations matter when extraction is high
(3) Anaemia
- Low output states
(3) High O_{2} demand (sepsis)

Oxygenation Summary

(3) Physiology
© Assessment of oxygenation
© Oxygen Flux equations

- Examples
veltman.org/education/ABG/

