Drug Therapy of Diabetes

MBBS FANZCA FASE Director of Anaesthesia Joondalup Health Campus

Overview

Definition and Incidence Physiology Aetiology and Pathophysiology Treatment Aims Pharmacology Insulin Oral agents Non-pharmacological Treatments

Definition and Incidence

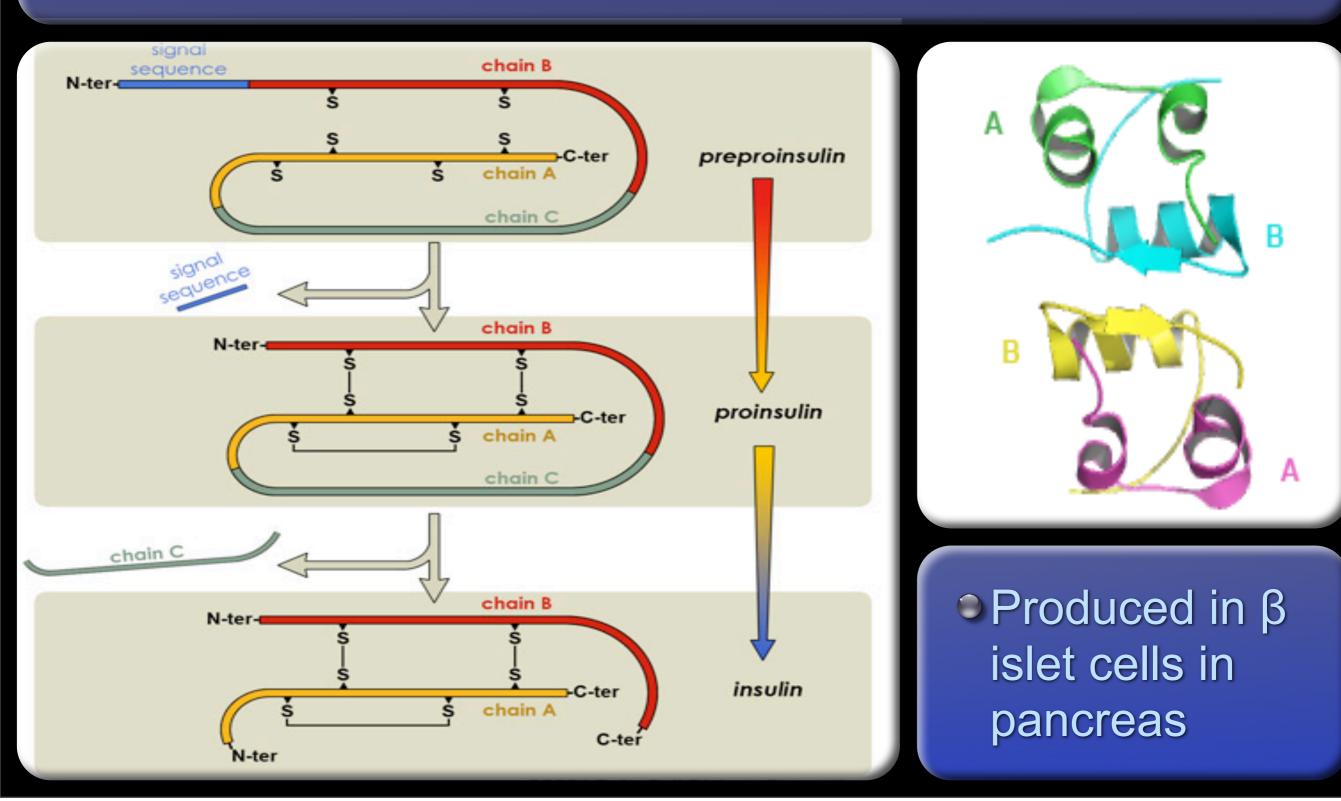
Sunday, 17 June 2012

Diabetes Mellitus

History
 Mellitus versus Insipidus
 Insulin treatments
 Definition
 Plasma glucose > 7 mM, Fasting
 Plasma glucose > 11.1 mM, 2 hours post GTT

Incidence

 Common Disease in the western world
 6% of the world's adult population (285 million)
 Rising rapidly - was only 30 million people in 1985


Classification

Type I (5%)
Autoimmune
Other (rare) - Pancreatitis, toxins
Type II (90-95%)
Insulin Resistance
Gestational

Physiology

Sunday, 17 June 2012

Insulin

Insulin

Hormone produced by pancreas.
 Regulates metabolism:
 Carbohydrate
 Fat

Insulin is needed for uptake of glucose

Insulin Effects

Sunday, 17 June 2012

Cellular physiology

Binds to the insulin receptor α subunit
 Also binds to IGF-I
 Causes activation of
 Tyrosine Kinase
 Phosphorylation of of cytoplasmic protiens

Insulin - Rapid Effects

Rapid increases in transport of
 Glucose
 Amino Acids
 Potassium

Insulin - Intermediate Effects

Increased protein synthesis
 Decreased protein degredation
 Glycolysis
 Inhibition of gluconeogenesis

Insulin - Delayed Effects

 Increased lipogenesis
 Mediated through increased production of enzymes

Glucose Transport

	Location	Affinity	Capacity
GLUT-1	RBC, Endothelium, Fetal cells	1-2	Low *
GLUT-2	Pancreatic β cells, liver, renal tubules	12-20	High
GLUT-3	Neurons, Placenta	<1	Medium
GLUT-4	Fat, Muscle	5	Varies
GLUT-5	Fructose transport	1-2	

Sunday, 17 June 2012

Aetiology -Type I

Due to a loss of insulin secreting cells
 β Islet cell produce insulin

Multifactorial
 Genetic (30-50%)
 Autoimmune

Aetiology - Type II

Due to insulin resistance.
 Compensatory hypersecretion
 Ultimately leading to islet cell failure

Pathophysiology

Diabetic Complications Acute

Hyperglycaemia
Polyuria. (+ loss of electrolytes)
Impaired immune function
Impaired injury response
Myocytes
Neurons

Diabetic ketoacidosis

Diabetic Ketoacidosis

Medical Emergency Acidosis is the key feature Excess production of Aceto-acetate, β Hydroxy butyrate. • Fall in pH Acidic Urine Loss of Na⁺ and some K⁺ in urine

Chronic Diabetes

More a disease of fat metabolism
 Elevated free fatty acids
 Altered metabolism of Acetyl-CoA
 Ketone formation (source of energy)

Diabetic Complications Chronic

Accelerated Vascular Disease Peripherally Coronary Cerebral Retinopathy Neuropathy Nephropathy

Aims of therapy

Sunday, 17 June 2012

Critical Care Setting

- Aiming to prevent high (>8.0 mMol) levels of glucose
 - Intravenous insulin is the drug of choice
- Benefits:
 - Critically unwell
 - Myocardial injury
 - Neurological injury (?)

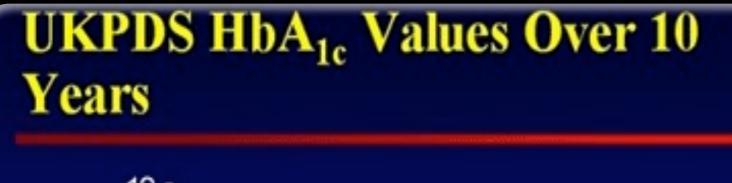
Diabetic Ketoacidosis

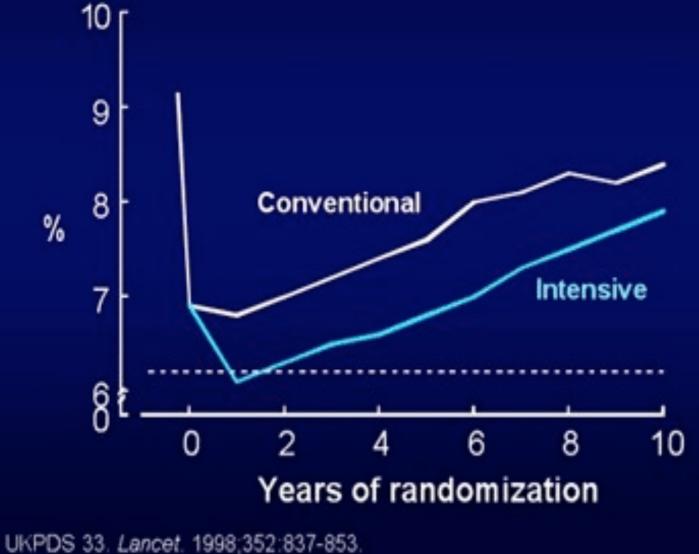
Aim to restore deficits in:
Insulin
Potassium and Sodium
Water
Life threatening condition
5% mortality

Critical Care Setting

Insulin can be used to lower potassium
 Usually given with glucose
 Doesn't shift potassium out of the body

Aim in the community


 Minimise the longer term impact of elevated glucose


- Day to day fluctuation is not that important
- Glycosylated Haemaglobin is very good measure
- Avoid hypoglycaemic events

HbA1c

Haemoglobin has a 120 day lifespan
 Glycosylation happens spontaneously
 Glycosylation is proportional to glucose level
 Normal level is 4.0-5.9 %
 Level above 6.5% suggests diabetes
 Target in diabetes is < 7.0%

Disease Progression

 Type II diabetes is a progressive disease

Insulin

Sunday, 17 June 2012

Insulin Manufacture

Done with recombinant DNA
USE bacteria or yeast.
Species variation exists
Essentially all human insulin now.
Lower reaction rates to human insulins

Insulin Administration

Subcutaneous
Intravenous Insulin
Other routes

Inhalational, transdermal, intranasal, oral

Insulin Pharmacology

Types of insulin
 Mechanisms of action
 Dosage

Insulin

Ultra fast acting
Fast Acting
Intermediate Acting
Long Acting

Ultra Fast Acting

Lispro (Lysine and proline swap on B chain)
Aspart (Aspartic Acid for Proline on B chain)
Both have high soluability
Rapid uptake - Onset 15 minutes
Peak effect at 45-90 minutes
Duration 3-5 hours.

Fast Acting

Insulin ("Actrapid")
Standard insulin
Onset 30 minutes
Peak 2-4 hours
Duration up to 6 hours

Intermediate Acting

Mixtard (Insulin/protamine)
 Onset 2 hours
 Peak 4-6
 Duration 12 hours

Long Acting

Used to use Zinc (Ultralente insulin)
 Mostly now use modified insulins
 Glargine

Adds arginine to C end of B chain
Low pKa leads to slow absorption

• Detemir

Binds myristic acid to the Lysine at B29

High affinity for Albumin

Long Acting

Onset slow - ? 4 hours
Duration 24 hours
No discernable peak.

Exogenous Versus Endogenous

Insulin has different effects depending on route of administration

- Ideal route is into the portal vein
- Next best is in peritoneal dialysis bag
- Intravenous is better in the acute setting
- Subcutaneous is the easiest for most.

Oral Agents

Types of oral agents

- Sensitisers
 - Biguanides (Metformin, Phenyformin)
 - Thiazolidinedines (Rosiglitazone, Pioglitazone)
- Secretagogues
 - Sulphonylureas (glipizide, glyburide, gliclazide)
 Meglitinides (repaglinide, nateglinide)
- α glucosidase inhibitors
- Peptide analogs

Sulphonylureas

Sulphonylureas

Glicizide, glipizide, glibenclamide
Inhibit potassium channel
Increase the amount of insulin secreted.
Effective, inexpensive
Hypoglycaemia & Weight Gain

Mechanism of action

Bind to ATP-dependent K⁺ channel
 Hyperpolarises the β cell membrane
 Opens voltage gated Ca⁺⁺ channels
 Fusion of insulin granulae with membrane

Sulphonylureas

Short half life - require BD or TDS dosing
 Metabolised by P450 enzymes

Interactions

Increased risk of hypoglycaemia
 Aspirin, allopurinol, sulphonylamides, fibrates
 Worsening glucose tolerance
 Steroids, isoniazide, OCP, sympathomimetics, thyroid hormones

Complications

HypoglycaemiaWeight Gain

Overstimulation of β cells
 Possible risk of disease acceleration.
 Teratogenic
 Little to no survival benefit seen

Biguanides (Metformin)

Type II diabetes
Prediabetes (less benefit than lifestyle Δ)
Polycystic ovarian disease
Gestational diabetes (? foetal safety)
Reduced pancreatic cancer risk
Reduced weight gain from other agents.

Mechanism of Action

Inhibits gluconeogenesis to 1/3 baseline
 Most Type II diabetics have 3x increase
 Activates AMP-activated protein kinase
 AMPK activation increases SHP
 Inhibits gluconeogenesis genes

Kinetics

Bioavailable 50-60%
Peak 1-3 hours, 8 hours with SR
Minimal plasma protein binding
High volume of distribution (10 L/kg)
Not metabolised
Cleared by tubular secretion (T1/2 6.2 hrs)

Advantages

Reduces diabetic complications
Mortality reduction of 30% c.f. insulin or sulphonylureas
Mortality reduction of 40% c.f. diet control
Less weight gain
Lower risk of hypoglycaemia

Contraindications

Lactic acidosis risks
Renal, Lung, Liver, Heart disease
No actual evidence of harm however
Cease before iodine contrast
Actual risk is 9/100 000 person years

Adverse Effects

GIT
Diarrhoea, GI upset, Nausea, Vomiting
Hypoglycaemia
Alcohol

Glitazones

Insulin sensitiser (Binds PPAR receptor)
 Makes cells more sensitive to insulin
 Third line drug
 Usually in combination with metformin

Adverse effects

Increased risk of • AMI(Rosiglitazone) Heart failure (Pioglitazone) Stroke (Rosiglitazone) Bone fractures Bladder Cancer (Pioglitazone) Macular oedema (?) & Acute hepatitis (?)

Adverse Effects

Most glitazones have been withdrawn from some market, somewhere for some safety concern.

 \bigcirc

Advantages

Low risk of hypoglycaemia

 Caution with alcohol or other hypoglycaemic agents.

May be a better alternative than going to insulin

Pioglitazone may reduce rate of atheroma progression.

Raises HDL, lowers TG and hsCRP.

Non Pharmacological Treatments

Other treatments

Diet Avoid High GI carbohydrate Surgery Bariatric surgery Pancreatic transplantation Implantable pumps Exercise

Summary

Definition and Incidence Physiology Aetiology and Pathophysiology Treatment Aims Pharmacology Insulin Oral agents Non-pharmacological Treatments