Unconsciousness Causes & Mechanisms

Professor Michael Veltman MBBS FANZCA FASE FFPMANZCA

University of Notre Dame

Director of Anaesthesia
Deputy Director Medical Services
Joondalup Health Campus

Unconsciousness

WARNING

This material has been reproduced and communicated to you by or on behalf of The University of Notre Dame Australia in accordance with section 113P of the Copyright Act 1968 (Act).

The material in this communication may be subject to copyright under the Act.

Any further reproduction or communication of this material by you may be
the subject of copyright protection under the Act.

Do not remove this notice.

Outline & Learning Objectives

- Definitions of key terms
- Physiology of consciousness
- Assessment & Differential Diagnosis
- Management
- Medically Induced Coma

Definitions

Definitions

- Consciousness
- Sleep
- Delerium
- Dementia
- Coma

Consciousness

- Self-awareness
- Access to memories
- Ability to manipulate abstract ideas
- Focus of attention

Sleep

- A state of reduced interaction with the environment
- Reversible
- Different from anaesthesia/coma.

Delirium

- Acute condition with altered mental state
- Organic basis
- Syndrome (not a diagnosis)
 - Multiple causes.
 - inability to focus attention & mental confusion
 - impairments in awareness & temporal and spatial orientation
 - Many similarities to coma.

Coma

- Unrousable unresponsivenss.
 - No response to pain.
 - Reflects a lack of CNS function
- Usually has preserved brainstem function
 - Brain mediated reflexes are preserved.

Brain Death

- Irreversible state
- Loss of all brain function
 - No response to pain
 - No brainstem reflexes
- Exclusions
 - Temperature, drugs

Pathology with normal conscious states

Dementia

- Not the same as alteration of consciousness
- Alert mental state
 - Anosognosia (unawareness of illness)

Ischaemic Stroke

- Ischaemic stroke will only affect consciousness if brainstem affected
 - Hemorrhagic stroke is different.
- Usually has focal neurology.

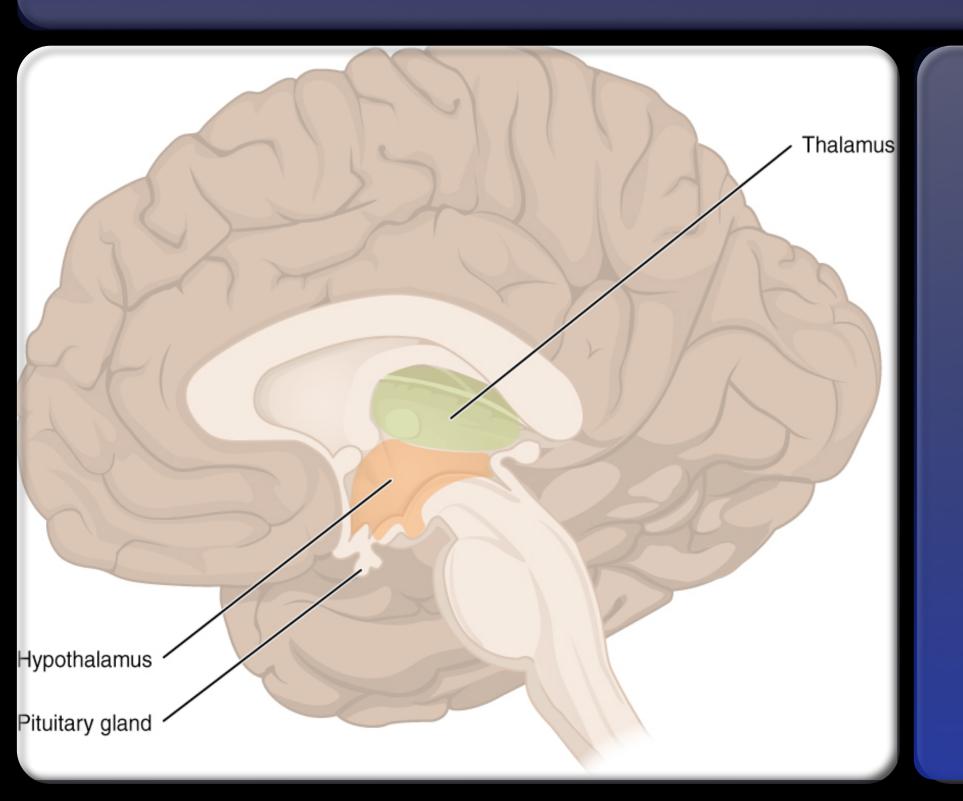
Locked in syndrome

- Awareness, sleep-wake cycles
- May have some meaningful behaviour

- Due to
 - High level spinal injury
 - Guillain-Barré syndrome
 - Parkinson's disease (severe) or similar

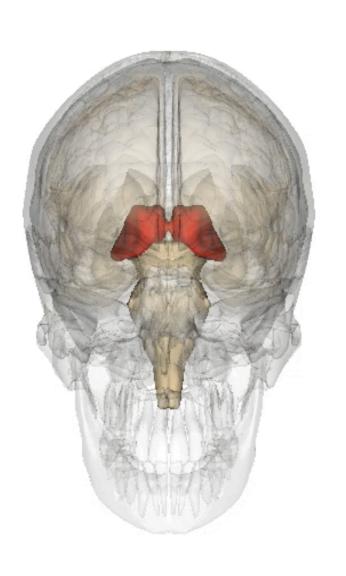
Pathology with altered conscious states

Epilepsy

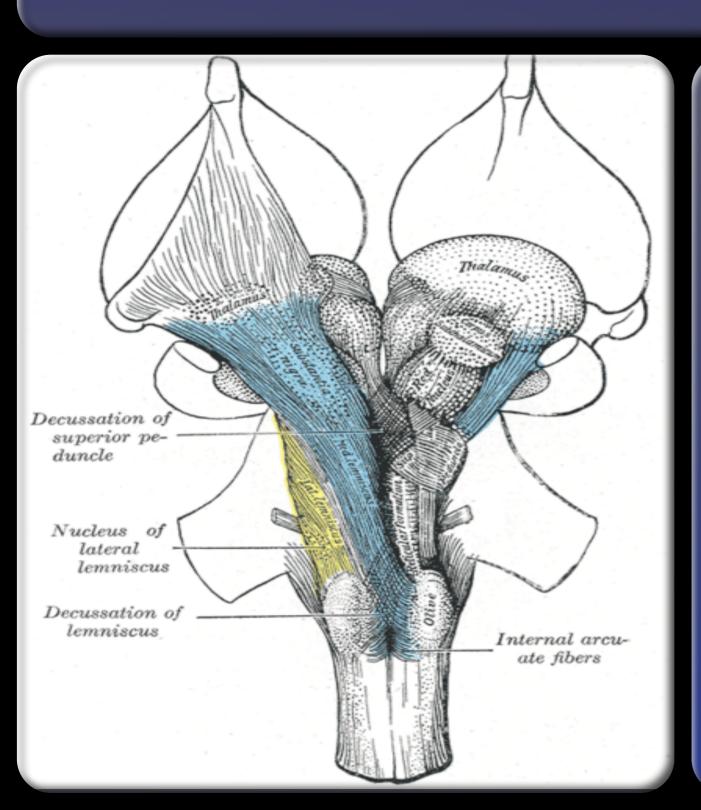

- Epilepsy is a condition of uncontrolled discharge of neurones
 - Generalised seizures are associated with a loss of consciousness
 - Partial seizures are associated with an altered conscious state

Narcolepsy

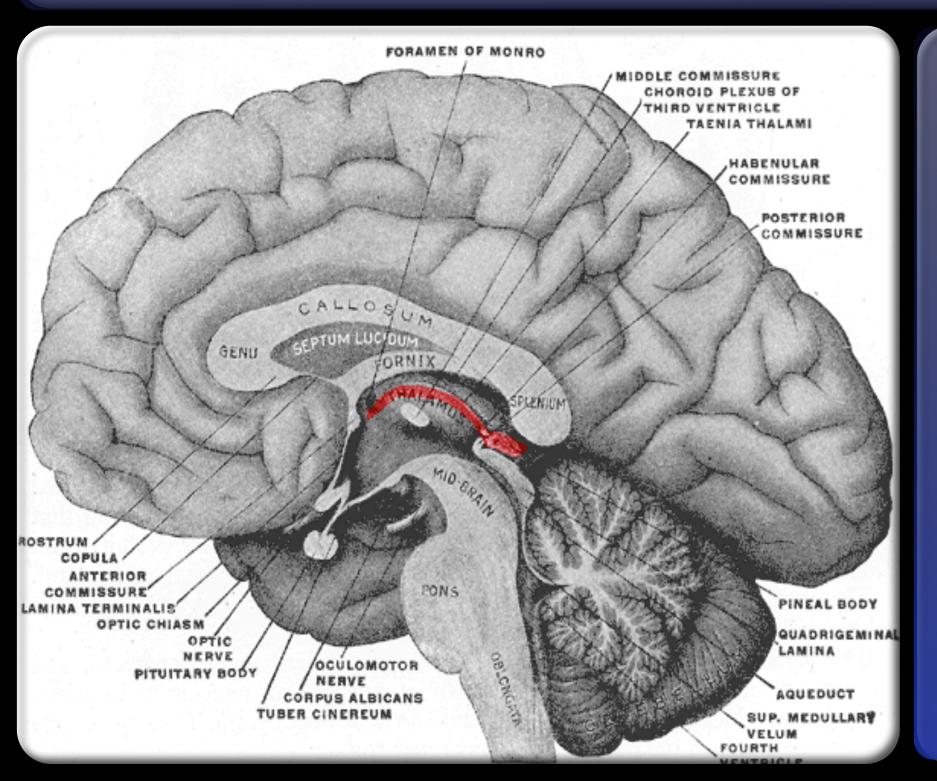
- Due to the lack of orexin in the hypothalamus
- Loss of stabilising switch
- Sudden onset of sleep


Physiology of Consciousness

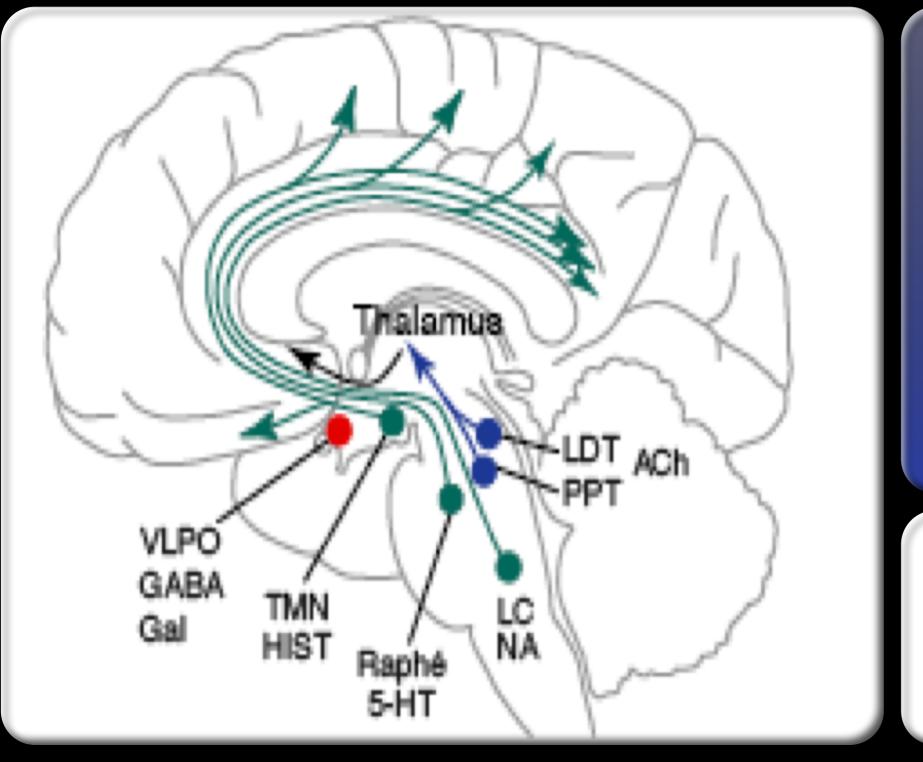
The Diencephalon


- "Interbrain"
- Region of the embryonic vertebrate neural tube
- Gives rise to posterior forebrain structures

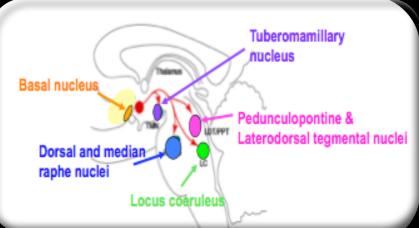
Role of Thalamus


- Directing sensory input (except olfaction)
- Motor function control
- Autonomic and endocrine function control
- Homeostasis

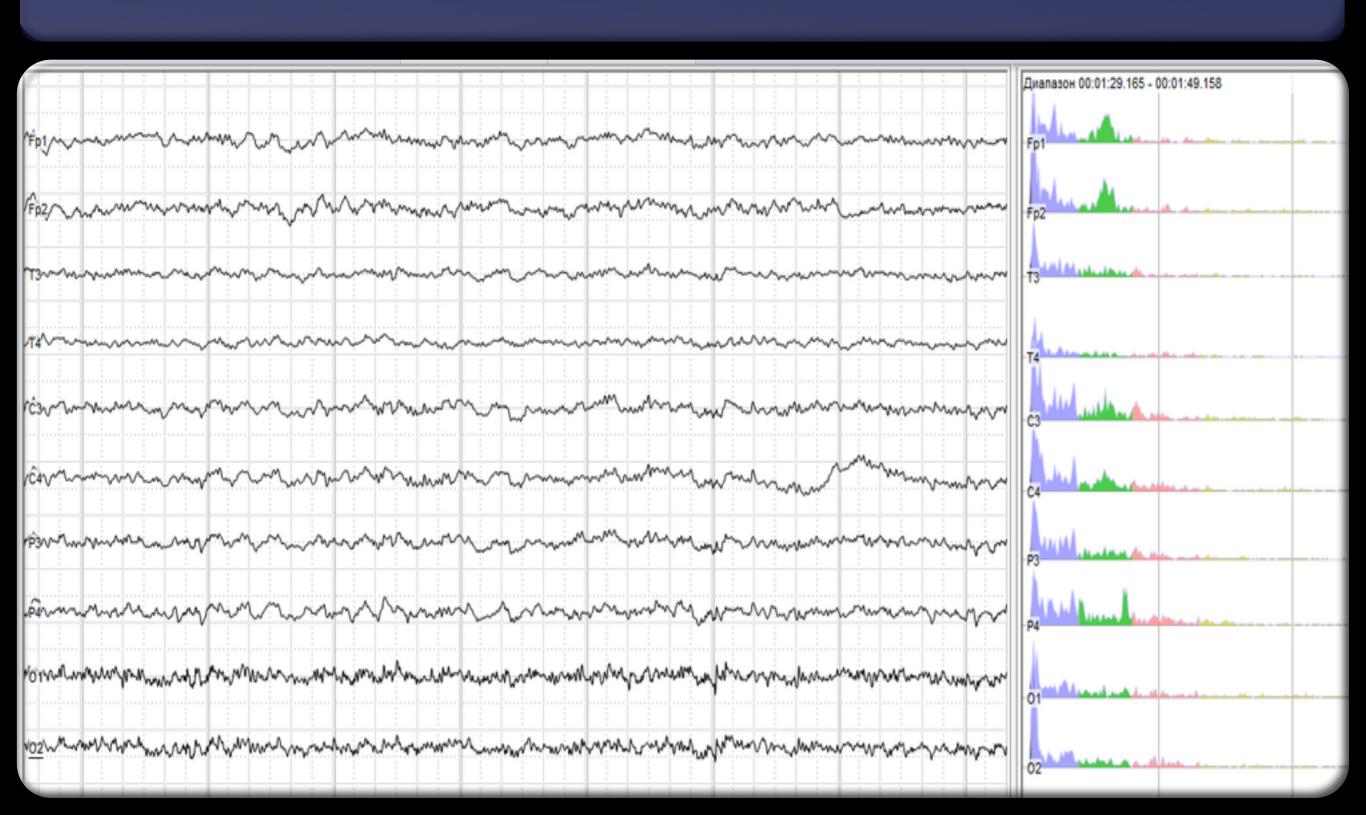
Reticular Activating System

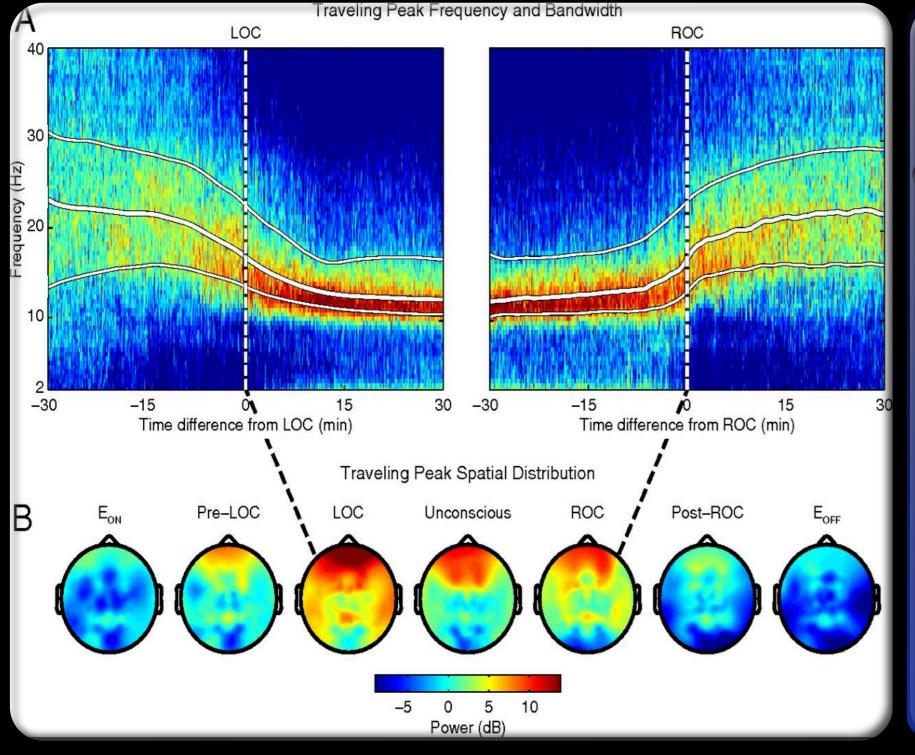

- Very Broad term
- Several nuclei:
 - Midbrain Reticular Formation
 - Mesencephalic nuclei
 - Pontine Tegmentum
 - Thalamic intralaminar nucleus
 - Hypothalamus
- Is not the sole component of alertness

Physiology of consciousness

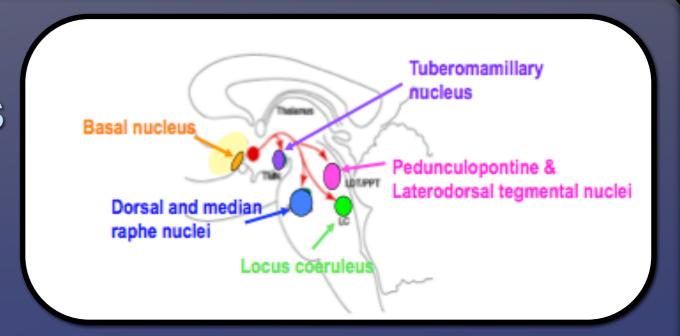


- Within the diencephalon
 - Thalamus
 - Hypothalamus
 - Epithalamus
 - Ventral/Pre-Thalamus
 - Third Ventricle


Cortical alertness systems


Forwardprojectionsinto cortex

Electroencephalography


Spectral Frequency

- Consciousness is associated with:
 - Higher frequency firing of neurones
 - Synchronised
 discharges across
 larger areas of the
 brain.

Transmitter systems associated with alertness

- Monoamine systems
 - Serotonin (raphe)
 - Histamine (TMN)

- Noradrenaline (locus ceruleus)
- Cholinergic systems AcetylCholine
 - Brain stem (LDT and PPT) project to thalamus
 - Forebrain (basal nucleus of Meynert) to cortex

Assessment and Diagnosis

Assessment

- Start from basics.
- Is the person unresponsive
 - Airway
 - Breathing
 - Circulation
- If so
 - ALS or BLS algorithmns apply

ALS causes of unconsciousness

- These are emergencies
- Need to treat quickly
 - Usually within a few minutes

The H's of ALS

1-2	U	C	
	L.		

Hypovolaemia

Hypoxia

H+ (Acidosis)

Hyper/hypokalaemia

Hypoglycaemia

Hypothermia

Altered mental state

When MAP < 60mmHg (\approx 80/50)

When $DO_2 < 400 \text{ml/min} (SaO_2 < 60\%)$

With pH < 7.0 or > 7.6

Only with arrythmias (K + < 3.0 or > 8.0)

When BSL < 3.0 or > 30

When core temp < 28° Celcius

The T's of ALS

Cause	Altered mental state
Caasc	Altered illelitar state

Toxins

Tamponade

Tension Pneumothorax

Thrombosis (AMI, PE)

Trauma (Head)

Depends on drug

When MAP < 60mmHg ($\approx 80/50$)

When MAP < 60mmHg ($\approx 80/50$)

When MAP < 60mmHg (\approx 80/50)

Need raised pressure (CPP > 60 mmHg) *Head injuries may cause hypertension*

Cerebral Perfusion Pressure

- Cerebral Perfusion Pressure
 - Mean Arterial Pressure Intracranial Pressure
- Needs to be > 60 with acute head injuries
 - Normal ICP 11 mmHg
 - Mild head injury 20 mmHg
 - Severe head injury >40 mmHg

Assess Conscious State

- Glascow coma scale probably the best
- Three areas of assessment
 - Eye movement (Scale of 1-4)
 - Verbal responses (Scale of 1-5)
 - Motor responses (Scale of 1-6)

Assess Conscious State

	Eye	Verbal	Motor
1	Closed	Silent	Immobile
2	Opens to pain	Incomprehensible sounds	Extension to pain Decerebrate
3	Opens to voice	Inappropriate words	Flexion to pain Decorticate
4	Opens spontaneously	Confused or disoriented	Flex/Withdraw to pain
5		Oriented, conversations normal	Localises pain
6			Obeys command

Interpreting the GCS

- Assessing head injury
 - Severe, with GCS < 8 (coma)
 - Moderate, GCS 8 –12
 - Minor, GCS ≥ 13.
- Any reduction in GCS from 15 is abnormal
- GCS falling over time is an emergency.

Differential Diagnosis

- Very long list of causes
 - All disease states end in coma and death
- Focus on ones where there is no obvious other cause

"AEIOU TIPPSSS"

- Alcohol
- Epilepsy
- Insulin & glycaemic changes
- Overdosage of drugs
- Uraemia & metabolic causes

TIPPSSS

- Trauma to head
- Infection (esp in elderly or if intracranial)
- Raised intracranial pressure
- Psychiatric disorder
- Stroke
- Simple Feint
- Stokes-Adams (cardiac arrythmia)

Predisposing Causes

- Cognitive impairment / dementia
- Comorbidity
 - Older Age
 - Dehydration / Malnutrition
 - Drug and alcohol use
 - Psychiatric e.g. depression
- Sensory impairment (vision, hearing)
- Functional dependence

How to assess

- History and examination, basic observations
- Basic chemistry
 - © EUC, BSL, FBP, Ca++, ABG's
 - Toxicology
 - TFT's, LFT's
- Imaging CT Head (vs MRI)

Management

Basics

- Remember ABC's fix these first
- Assess Glasgow Coma Scale
- If rapidly falling GCS, or if GCS < 12</p>
 - Medical Emergency minutes count
- If stable (over hours)
 - Requires urgent investigation.

Coma

- General management
 - Support basic organ systems
 - Obtain a diagnosis
 - Manage specific problems and complications

Rapidly Falling GCS

- ALS algorithmn
- IV access (+ take bloods)
- Intubate & mildly hyperventilate
 - \bigcirc Aim for PaCO₂ = 30mmHg
- Investigation (including brain imaging)
 - Only do lumbar puncture after imaging

Emergency Management

- Conditions you need to have a plan for
 - Seizures
 - Altered plasma glucose
 - Raised intracranial pressure
 - Head trauma
 - Sepsis

Seizures

- Management (after ABC's)
 - Midazolam 0.1 mg /kg or Diazepam 0.15mg/kg
 - Phenytoin 15mg/kg over 30 minutes

Can consider Thiopentone/Propofol

Hypoglycaemia

- Glucose 50%
 - 25-50 mL
 - Need larger bore needles and cannula

Raised ICP

- Imaging essential to exclude masses
- Medical management
 - \bigcirc Mannitol (0.25-0.5 g/kg) ≈ 150ml 20% mannitol
 - Hypertonic saline
 - Prevent hypercapnia
- Surgical management

Trauma

- Primary & Secondary injury
 - Aim to minimise secondary injury
- Aim to normalise
 - OCO2, BSL, ICP, CPP
- Aim to prevent
 - Seizures, Hyponatraemia.

Sepsis

- Time to intervention is important:
 - Get samples (blood/urine/sputum/etc)
 - Antibiotics
 - Supportive management (eg for BP)

Induced Coma

Rationale for Benefit

- Anaesthesia (surgery and procedures)
 - Mostly for amnesia different from coma
- Induced coma in ICU
 - To allow hypothermia
- Trauma
 - Management of head injuries

Induced coma

- Benefit in non traumatic head injuries
 - Reduce core temperature to < 35°</p>
 - Must be done shortly after brain injury
 - No benefit with trauma
- Need to stop normal thermoregulation

Trauma

- Mostly to control airway and PaCO₂
 - Usually requires paralysis
 - Thiopentone/Propofol + suxamethonium
 - Midazolam + rocuronium
- Occasionally for oxygenation.

Drugs

- Inhalational anaesthetics
- Intravenous anaesthetics
- Benzodiazepines
- Other sedatives

Inhalational Agents

- Nitrous Oxide, Methoxyflurane
- Desflurane, Sevoflurane, Isoflurane
- Advantages
 - Easy to administer
 - Measure depth of anaesthesia
 - Minimal tolerance
 - Analgesia with N₂O and Methoxyflurane

Intravenous agents

- Proprofol
 - 2 mg/kg induction, 30-50 mg/kg/hr (maintence)
 - Fast onset and offset
- Thiopentone
 - 3-5 mg/kg induction, maintence more complex
 - Reduces ICP and Cerebral O₂ requirements
- IV agents match O₂ with blood flow.

Benzodiazepines

- Midazolam
- Diazepam

Note differential effects on amnesia versus coma.

Other Agents

- Analgesics: Opiates
 - μ receptor agonists
- Sedatives: Clonidine, Dexmetomidine
 - α2 receptor agonists
- Ketamine
 - NMDA receptor antagonists

Summary

- Definitions of key terms
- Physiology of consciousness
- Assessment & Differential Diagnosis
- Management
- Medically Induced Coma