

COMPLEX REGIONAL PAIN Syndrome

Michael Veltman MBBS FANZCA FASE FFPMANZCA

Outline

Definition Diagnosis Pathophysiology Management

What is CRPS

Lots of confusion about what this condition is:

"Reflex Sympathetic Dystrophy"

Multiple diagnostic criteria historically

IASP Budapest Criteria (1998) have the best acceptance.

Type I - With no nerve injury

Type II - With nerve injury

CRPS is a condition that should primarily be managed by pain specialists

EPIDEMIOLOGY

26.2 per 100 000 life years c.f. RA 30/100 000, MS 4/100 000 Females 3.5:1 Upper limbs 60% Type 1 most common

Increases with age - peak at 55 - 70 years

Economic Costs

Major costs to the community of CRPS

- High levels of mobidity.
 - More pain and dysfunction than either rheumatoid arthritis or fibromyalgia.

Average health care costs were 5700 euros in 1998 - much higher now.

INCITING EVENTS

Peripheral musculoskeletal

Fractures 45%

Sprains 18%

Elective surgery 12%

Nerve injury - Peripheral & Centeral

Other - CNS, Visceral

Idiopathic - 10%

OTHER ASSOCIATED FACTORS

Caucasian race

Higher median income

Depression

Drug abuse

Pre-existing pain conditions:

Fibromyalgia

Headache

PROTECTIVE FACTORS

Associations with lower rates of CRPS

Obesity

Diabetes

Hypothyroidism

Anaemia

DIAGNOSIS

BUDAPEST CRITERIA

Consensus meeting in 2003

Improvement on previous IASP criteria

- Sensitivity 85%
- Specificity: 69%
 - 3 Symptoms
 - 2 Signs

IASP Clinical Budapest Criteria in diagnosing CRPS	
1. Continuing pain that is disproportion	onate to any inciting event
2. At least one symptom reported in a	at least three of the following categories:
Sensory	Hyperesthesia or allodynia
Vasomotor	Temperature asymmetry, skin color changes, skin
	color asymmetry
Sudomotor	Edema, sweating changes, sweating asymmetry
Motor/trophic	Decreased range of motion, motor dysfunction
	(weakness, tremor, dystonia), trophic changes
	(hair, nail, skin)
3. At least one sign at time of evaluat	ion in at least two of the following categories:
Sensory	Evidence of hyperalgesia (to pinprick), allodynia (to
	light touch, temperature sensation, deep somatic
	pressure or joint movement)
Vasomotor	Evidence of temperature asymmetry (>1 C°), skin
	color changes or asymmetry
Sudomotor	Evidence of edema, sweating changes or sweating
	asymmetry
Motor/trophic	Evidence of decreased range of motion, motor
	dysfunction (weakness, tremor, dystonia), trophic
	changes (hair, nail, skin)
4. No other diagnosis can better expla	ain the symptoms and signs

4. No other diagnosis can better explain the symptoms and signs

changes (hair, nail, skin)

dysfunction (weakness, tremor, dystonia), trophic

Clinical Features

Negative Symptoms Positive Symptoms Autonomic Symptoms Motor/trophic symptoms

Synpyods Negative Hypoasthesia Sensory loss Sensory loss Positive Burning pain Allodynia Hyperalgesia

VASOMOTOR

• Temperature

Colour

SUDOMOTOR CHANGES Look for asymmetry of signs and symptoms of: Oedema Sweating

MOTOR/TROPHIC Symptoms Motor Changes Weakness & Tremor Reduced range of motion Dystonia Trophic Changes Hair & nail growth Skin changes

Key points in diagnosis

Use the Budapest criteria, but understand its limitations

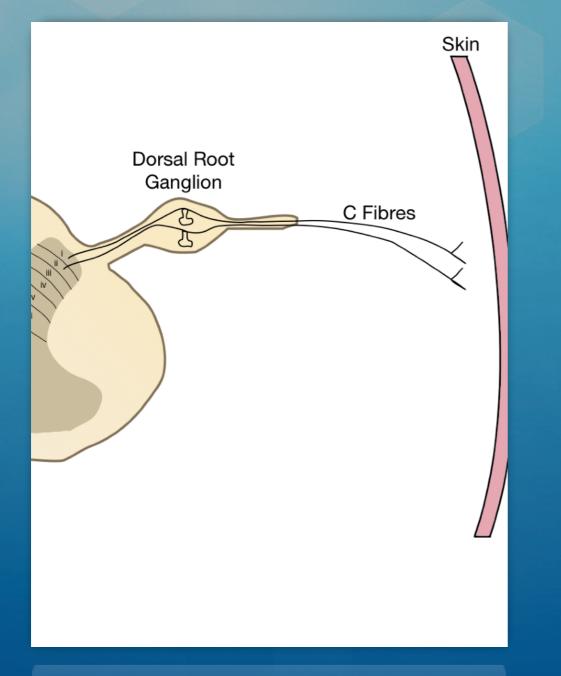
Type I vs Type I I CRPS is somewhat arbitrary. Remember to exclude other conditions. Generally only affects one limb But it can spread

Don't need to wait 3 months - and you shouldn't

Pathophysiology

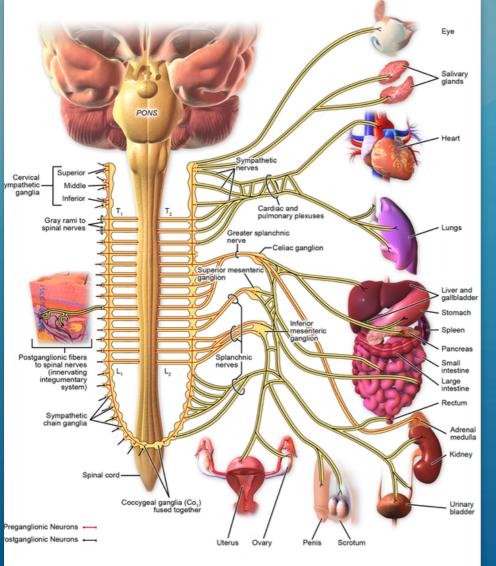
Pathophysiology

Inflammation Sympathetic dysfunction Autoimmune Central Sensitisation Limb Ischaemia Cortical Reorganisation Nerve Damage



INFLAMMATION

Pro-inflammatory immune response


Proliferation of keratinocytes and release of: IL-6, IL-1 β, TNF-α; Histamine (warm phase) Activation of osteoblasts and osteoclasts Antigen mediated T cell response Increased IL-10, decreased IL-37

INFLAMMATION & Pain Fibres C-fibre activation Afferent pain signals Efferent neuropeptides CGRP, Substance P Keratinocyte proliferation A- α nerve fibre degeneration A- δ nerve fibres preserved

Sympathetic Innervation

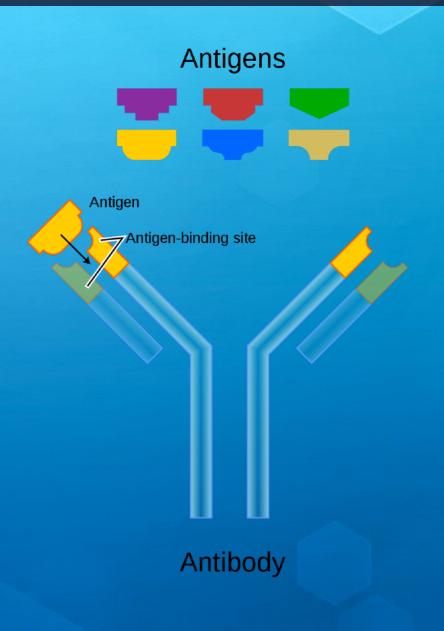
Sympathetic Innervation

AUTONOMIC Nervous System Acute Phase Reduced sympathetic activity Up regulation of α_{1} adrenergic receptors Increased pain with α_{\perp} agonists Chronic Phase Increased sympathetic activity Increased cytokines endothelin-l noradrenaline

Autoimmune Changes

Elevated autoantibodies in serum - IgG, IgM

Pain levels are proportionate to elevations in IgG

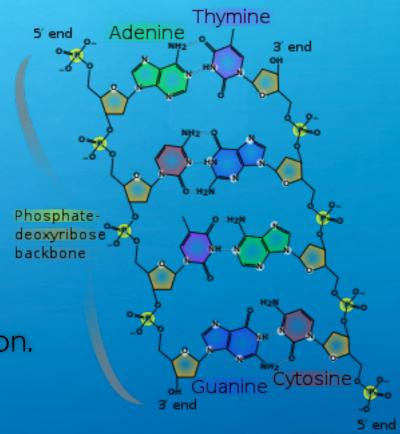

Antibodies have α_1 , β_2 Adrenergic & M₂ Muscarinic agonist activity

IgM autoantibodies produce pain via

Direct action on targets

Complement activation

Deposition of antibodies


GENETICS

Tends to run within families

HLA DRBI unregulated, HLA-DQBI downregulated Other HLA associations: DQI, DQ8, DR6, DR13, B62 Role of HLA is to present antigens.

Epigenetic modification of CpG sites

- Mostly hypomethylation of sites related to immune function.
- Genetic associations:
 - β 2 adrenoceptor polymorphisms, TNF α polymorphism

CLINICAL COURSE

CLINICAL COURSE

Three broad phases Warm (Acute inflammatory) phase Cold (Chronic inflammatory) phase Trophic phase - Probably an extension of the cold phase Only 2% have relapsing/remitting phase Phases aren't always present

CLINICAL COURSE

At 6 years after disease onset

30% of patients completely recovered

54% stable disease.

15% no improvement

Overall 30% of those who worked previously remain unable to work.

INVESTIGATIONS

Limited value in CRPS

X-ray

Bony excavations, resorption, demineralisation

MRI

Effusions, marrow oedema

Treatment Options

Multidisciplinary Team

Physiotherapy / Occupational Therapy

Mirror box therapy Graded Motor Therapy Desensitisation

Clinical Psychology

CBT & ACT

Pharmacotherapy

Non steroidal anti-inflammatory drugs

Traditional treatment, but actually little evidence

Non significant reduction of CRPS 500mg aspirin daily in one study.

Steroids

Prednisolone has some evidence.

Exact dose and duration not well established. One study with benefit: 60mg daily for 28 days for acute phase

Superior to NSAID's

Not beneficial in chronic phase

ANTIOXIDANTS

Vitamin C - 500mg/day for 45-50 days

Some evidence for dose of 500-1000mg /day most effective

Less evidence for

Fish oil NAC 600mg/day

Dimethylsulphoxide (DMSO) cream

Biphosphonates

Several studies show benefit

Modulate inflammatory mediator, migration of marrow cells. Palmidronate 60mg IV equal effectiveness as prednisolone

Antineuropathic agents

Effectiveness is unclear, but some studies show benefit. Gabapentin up to I 800mg/day Similar results shown for amitriptyline in some studies

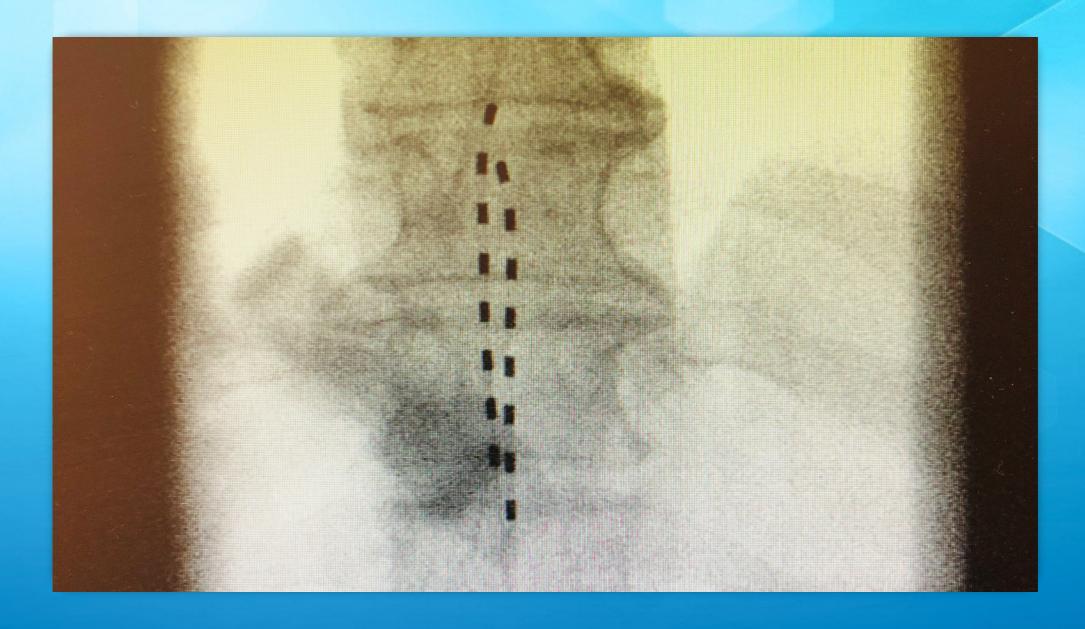
Standard neuropathic treatment options probably apply here

LIMITED EVIDENCE FOR SOME AGENTS

Ketamine:

- Some evidence for intravenous and topical ketamine
- No large RCT studies to date
- Naltrexone limited evidence for CRPS
- Botox significant reduction in pain in refractory CRPS
- Plasma exchange therapy
- CBD reduction in pain scores in one study.

Lacking Evidence


Capsacin

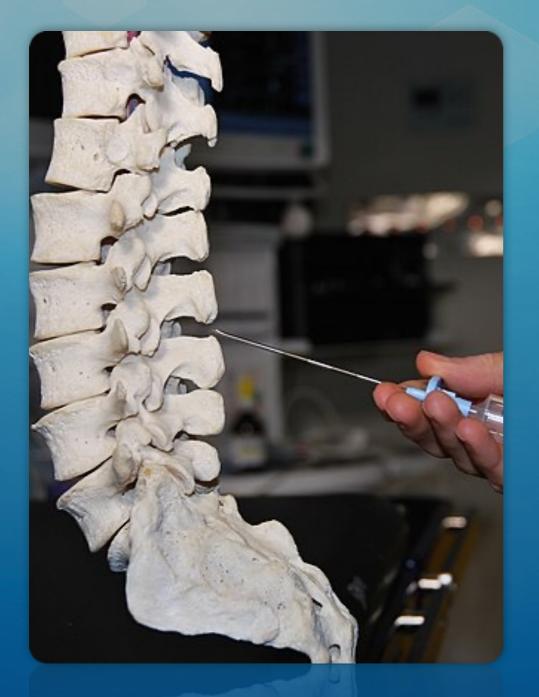
IT baclofen

IV Local anaesthetic

Pregabalin

NEUROMODULATION

TRANSCRANIAL MAGNETIC STIMULATION


Magnetic pulses to induce cortical stimulation

Evidence that it reduces pain

Effect persists beyond duration of treatment.

Limited evidence to date.

EPIDURAL BLOCKADE

Some evidence for sympathetic blockade at level of pain.

Most get pain reduction at time of procedure. Most get I-4 weeks of benefit, a small number get persistent benefit

Stellate ganglion block may be of benefit for similar reasons

NEUROMODULATION

Spinal Cord Stimulation

Benefit seen for CRPS

Now getting >80% reduction in pain for most patients

Still some question about longer term efficacy.

OTHER INTERVENTIONS

Physiotherapy - Esp for upper limb SCRAMBLER - May have some benefit TENS - No evidence OT - Some benefit

SURGERY

Sympathectomy

Some evidence for pain benefit

Amputation

No evidence.

SUMMARY

Definition Diagnosis Pathophysiology Management